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Abstract. Transport properties for simple ring polymers are derived using renormalisation 
group techniques. The translational diffusion constant and the relaxational spectrum in 
the presence of hydrodynamic interactions are calculated to O( E )  ( E  = 4 - d,  d being the 
spatial dimensionality). Explicitly time-dependent correlations are presented in universal 
functional form to O ( E ) .  

Universal properties of long flexible polymer chains have been systematically studied 
with the use of renormalisation group ( RG)  techniques. Whereas static properties of 
both dilute and semidilute solutions have been explored in great detail [ 1-41, transport 
properties like the diffusion constant, relaxational spectrum and intrinsic viscosity have 
not been investigated to the same extent, even for dilute polymer solutions. The 
minimal model (defined below) which has been studied within the RG framework gives, 
to lowest order in E = 4 - d  ( d  being the spatial dimensionality), many universal 
predictions which can be compared with experiment. These predictions have mainly 
been derived for flexible linear chains. There is, however, another class of experi- 
mentally interesting systems to which RG techniques can be applied: flexible, simple 
(single) ring polymers. Although ring structures are less frequent in macromolecular 
substances than are linear or branched structures, molecules of some D N A  exist in the 
form of a single or multiple ring. I t  is therefore natural to ask how ring formation 
will affect universal (critical) properties of flexible (Gaussian) polymer chains. An 
attempt to answer this question has been made in [ 5 ] ,  where the conformation space 
RG technique has been used to derive the distribution function for an internal vector 
of a ring polymer in the presence of self-avoiding interactions. However, the transport 
properties of ring polymers have only been studied using techniques different from 
RG. The friction coefficient has been studied in [6] with the aid of the Kirkwood 
equation [7] and the intrinsic viscosity in [8 ]  in the presence of self-avoiding and 
hydrodynamic interactions. Generally speaking, it has been found that the friction or 
sedimentation coefficient is less sensitive to ring formation than is the intrinsic viscosity. 

In this paper we are interested in comparing transport properties of linear and ring 
polymers and we will consider in detail how ring polymers are affected by the 
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long-range hydrodynamic interactions. The simplest time-dependent correlation func- 
tion from which the translational diffusion constant DR and the relaxation spectrum 
can be extracted is the correlation (c(T, t )  C(T, t ) )  [9]. Here { c ( T ,  t )}y& describes the 
conformation of a polymer with bare chain length No parametrised by a contour 
variable T at time t .  According to the Green-Kubo formula we have 

1 
D = lim -{[c(T, t )  - C(O, o)]*). 

1-m 2dt 

For simplicity we assume c(0,O) = 0. The minimal model referred to above, within 
which our calculation is performed, is defined by the following set of Langevin equations 
describing coupled chain-solvent dynamics [3, 101: 

together with the incompressibilitycondition V U = 0. In ( 2 a )  and ( 2 6 )  u(x ,  t )  describes 
the solvent velocity field, qo is the bare solvent viscosity, A is the Laplacian, p denotes 
the pressure, lo= A,' is the bare translational friction constant and go is the strength 
of the hydrodynamic interaction. HE is the Edwards Hamiltonian [ 1 1 1  

H , = y  ' d 7  (") ' + iu0 5 d 7,  loN" d7' 6 ( C( 7') - C( 7')) 
0 a7 0 

(3)  

with uo being the bare excluded volume parameter and O,fGaussian random proceb ses 
with zero mean and covariance given by 

{ @ ( T ,  t ) @ ( V ,  S ) ) =  2 5 O 1 6 ( T -  a ) 6 (  t - S ) 1  (4) 

(f(x, t ) f ( x ,  . s ) ) = - ~ A ~ ( x - x ) ~ ( ~ - s ) I  ( 5 )  
where I is the d x d unit matrix. We have recently derived [ 121 an effective Lagrangian 
describing the system of Langevin equations ( 2 a )  and (2b) .  Introducing the two 
(imaginary) fields, C(T, t ) ,  a conformation response field, and u(x ,  t )  a solvent velocity 
response field, this formalism is suitable for the use of field-theoretic RG techniques. 
In particular, as the solvent velocity field u ( x ,  t )  appears explicitly in any order of the 
perturbation expansion, this method allows for calculations of dynamical quantitites 
to orders higher than O ( E )  where the Markov approximation cannot be used [12]. 
Utilising this formalism, we obtain 

( c (  7, t )  * C( T,  t ) )  = d{ic', c }  d{ii, u } c (  T, t )  c (  7, t )  exp J ( 6 )  

where the effective Lagrangian J = J o + J ,  can be decomposed into a free part Jo and 
an interaction part J ,  with 

I 
J;' = j0"' d 7  I dt(E( 7, t)hoc'( 7, t )  - c'( T,  t)d,c( 7, t )  + c'( T, t)A,d;c( T, t ) )  (7)  

describing the conformation field and 

J r ' =  ddx d t ( i (x ,  t)q,,(iV)'i(x, t )  - i ( x ,  t)a,ul(x, t ) -  G(x, t)qo(iV)'u,(x, t ) )  (8) I 1  
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describing the solvent velocity field. In (8) i denotes the transverse part. The hydrody- 
namic interaction is written 

Introducing normal coordinates into ( 7 )  which, in order to account for the periodic 
boundary conditions of a ring, are chosen in the form 

with 

2 n-kr 
Q(T2 = (k) I/’ cos (x) 
Q$)=($-)  s i n ( x )  

k = 1,2 ,  . 

2 n k ~  I, 2 

k =  1 , 2 , .  . . 

we obtain for the free response propagator of the conformation field of a simple 
polymer ring 

(12) (C( T,  t ) c (  a, 1’)  jO = @( t ’ - t )  Go( T, a 1 t ’  - t ) 

where 

is the Green function matrix, = A0(2n-k/ No)’, io = n-k/ No and 0 is the step function. 
From (12) we determine the static Green function G ~ ( T ,  a)  = ( c * ( T ) c * ( ~ ) ) ~  for a 
polymer ring in the centre of mass systpm using 

G$( T,  o) = A. d t G,* ( T, cr t ) (14) i,‘ 
where we have excluded the k = 0 mode in GO( T,  cr t ) .  Performing the sum over k we 
find 

dNo d d 
( C * (  T )  C*( T’) )o=-- - IT  - 7’1 +-( 7 - T ’ ) 2  

12 2 2 No 

and 

( c ( T )  * C ( T ‘ ) ) ~ =  d min(r, 7’) - ( d /  N O ) d  

According to (16) the free correlations of a Gaussian ring polymer are smaller than 
those of a linear chain because of the second term in (16). Introducing Fourier 
transforms for the solvent velocity and the solvent velocity response fields in equation 
(8), we determine the free solvent velocity response function 

(17 )  ( I? (k ,  t ) u , ( k ‘ ,  t ’ ) jO= @ ( t -  t ) 6 ( k +  k ’ ) P  exp[-vok2(t’- t ) ]  
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with P = ( I  - ( k k ) / k 2 ) .  Using (12) and (17) we obtain the correlation function (6), to 
order g;, 

~ G , ( T ,  a ’ / t - s ) ( T r  T ( c ( a ,  s ) - c ( a ’ ,  s))), 

+ 2gi77;‘ 5 N o  d a  5 N o  d a ‘  lo‘ d s  

x G O ( ~ , a I t - s )  C(T, t ) T ( c ( a , s ) - c ( a ’ , s ) ) , I c ( a ’ , s )  

0 0 

(18) >, a’ ( aa 

where Tr denotes the trace. The remaining averages in (18), denoted by ( )o ,  are 
performed with respect to the functional J o .  In (18) T (  c(  a,  s )  - c(  a’, s))  is the Oseen 
tensor 

T ( c ( a , s ) - c ( a ’ , s ) ) =  - P e x p [ i k . ( c ( a ,  s ) - c ( a ‘ ,  s))] (19 )  5, ;2 

which occurs because we have invoked the Markov approximation, an approximation 
correct only to lowest order ( O ( E ) ) .  The free correlation function 
( ~ ( 7 ,  t )  * 47, t ) ) O / d N o =  Q ( T ,  t I T ,  t )  can be written as a sum of two contributions: 

which, on performing the remaining integrals and using (13) and (16), leads to 

“ 1  
Q ( T, t I 7, t ) = 2A t / N i  + d - 7 cos 2F0 7 exp( -A ( l t ) . (22) 

p = l  (TP) 
Evaluating the remaining averages involving the Oseen tensor in the one-loop terms 
in equation (18), performing the momentum integrations and combining with (22), we 
secure 

(47, t )  - 47, t ) )  

X 

+ 4 Not  1 exp( - A ,  p )  t ) cos 2p07( NGi2 + ci( 2 r p )  - f - In 2 r p )  ] (23) 
p = l  E 

where 

with 9 being Euler’s constant. 
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According to equation (1) the translational diffusion constant DR is then given by 

DR =- 
l o  No 

The pole term in (24) is the same as the pole term for a linear chain, an observation 
which confirms the expectation that the critical properties of linear chains and rings 
can be described by the same renormalisation constants and therefore the same critical 
exponents to lowest order [ 5 ] .  Renormalisation is performed with 

N = ZN NO ( 2 5 0 )  
5 = 4 5 0  (25b) 
5 = (l /770)L‘/2 (25c) 

where L is a length scale. Setting g i  = qo = 1 (as both couplings are not renormalised), 
we obtain at the non-draining Gaussian fixed point, (* = 87r2/3&, 

3 
4 7r& 

DR =- ( 2 5 ~ N ) ” - ~  ’ ”  exp(&e). 

where v = + is the Flory exponent. For a linear chain, DL has been determined as [ 131 
3 

4 7r& 
DL = - (27rN)‘2-d’u  exp(-&)&. 

Therefore we find a universal ratio 
(28) 1 / 2  DR/ DL = e 

in d = 3, a result which should be possible to investigate experimentally. The fact that 
DR> DL has its origin in the Gaussian (equal time) correlation function 

(29 )  ) 1 
( [ c ( a ,  s) - c (a ’ ,  s)]‘)”= d la - a’/ --(a - a’)2 ( N” 

which enters into the expression for the Oseen tensor. 
Renormalising the one-loop terms in (23) in the same way and exponentiating the 

obtained form so as to give the correct results for arbitrary times in conformity with 
singular perturbation theory [ 141, we find the effective eigenvalue A describing the 
relaxation spectrum to O( E ) :  

which compares with the result for a linear chain [15] :  

Asymptotically ’\PPI, A I p i  behave as AP;\-p2-‘/’ (=  p”’ = p d ’ * )  with z being the dynami- 
cal exponent z = d. Finally, introducing new units I =  t A b , ,  I;,,, = AP,, , /AP, , ,  7 = r /  N, 
we write our result for ( c (  T, t )  - c( T,  I ) )  in universal form: 

1 2 i exp( -eC , ) -  f c o s 2 ~ p i ‘  (e (? ,  I )  e(?, t j ) /dN=-+ exp ( - X pp t ) 
6 ( 2 ~ ) ~ - ‘ / ~  , , = I  ( .rrP)* 

with 

The fact that our result, equation (32), is so simple (there are no terms to O ( E )  which 
depend on 7, I )  has its origin in the periodic boundary conditions for the ring. The 
renormalisation result (32) is basically of the same form as the free correlation function 
(22) with the effective eigenvalue modified. 

C, = ici(27r) -+?. 
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P 

Figure 1. The normalised eigenvalues h: (for the ring; full  curve) and h k  (for the linear 
chain; broken curve) plotted as a function of p .  

/ I  ! ] I l  , , I ,  , 
0 1 2 3 4 5 

T 

Figure 2. The correlation function Q(7, i)Q(?, i =  0) presented as a function of time T in 
a universal plot. The parameter values (from top to bottom) are ? =0.1 (0.9), i = O . 1 5 ,  
7=0.2(0 .8) ,  ?=0.3(0.7) and f = O . 5 .  
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In figure 1 we have plotted i; and 1; for the ring ( R )  and for the linear chain (L) 
as a function of p .  In figure 2 we have plotted the correlation function Q( 7, i)/ Q( 7, i= 
0) as a function of the new time unit 1. Note that figure 2 represents a universal plot. 
As expected, for large i the translational diffusion of the centre of mass dominates, 
so Q( 7, i) - 1. For shorter times the internal chain motion becomes important. In the 
i + O  limit (but t >> 1) we find Q(? = 0, i) - T2", a result in agreement with scaling 
arguments. It can be obtained by replacing the sum over p in (32) by an  integral and 
putting ? = O .  The crossover between these two limiting behaviours is shown in 
figure 3. 

We would like to comment on the inclusion of self-avoiding interactions. It is 
possible [16] to show that the translational diffusion constant for a polymer ring is 
given by 

with v = + + & E ,  which gives, comparing with the result for a linear chain [ 131, a universal 
ratio in d = 3: 

(34) DRlD,=e  3 / 8  . 

Finally, we would like to point out that because we describe the polymer dynamics 
using the Edwards model, the ring structure which is originally a circle could change 
into a knotted ring. This can only be prevented by putting a topological constraint 
(allowing winding number zero only) in our starting path integral. However, such a 
constraint would have to be treated non-perturbatively and we d o  not know how to 
perform the RG analysis in this case. We d o  expect, however, that the presence of a 
topological constraint will tend to make the ring more swollen [17] (compared to a 
linear chain) even in the absence of self-avoiding interactions. Therefore the ratios 

0.6 o,81 
0 

0.4 

0.2 

1 1 1 1  I I I  I l l /  I 1 I 1 1 )  1 

0 1 2 3 4 5 
f 

Figure 3. The crossover between the long-time, purely diffusive and the short-time behaviour 
as a function of i 

0 1 2 3 L 
i 

Figure 3. The crossover between the long-time, purely diffusive 
as a function of i 

i 
i 

1 

5 

and the short-time behaviour 
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(28) and (34) can only give a lower bound, and the exponent vR may in fact be larger 
than i or 4 + & E .  

To summarise, we have determined the time-dependent correlations 
(c( T, t )  - C( T, t ) )  for a simple ring polymer in the presence of hydrodynamic interactions, 
and we have extracted the translational diffusion constant D, and the relaxational 
spectrum to O( E ) .  The universal ratios derived from our calculations should be possible 
to check experimentally. The next step in a systematic investigation of the transport 
properties for simple ring polymers should be the calculation of the intrinsic viscosity 
in order to obtain more information about the influence of ring formation on critical 
properties. 
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